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SUMMARY

This paper presents a nonlinear stress analysis of a thick-walled

compound tube subjected to internal pressure. The compound tube is

constructed of a steel liner and a graphite-bismaleimide outer shell.

Analytical expressions for the stresses, strains, and displacements

are derived for all loading ranges up to failure. Numerical results

for the stresses and the maximum value that the compound tube can con-

tain without failure are presented.

INTRODUCTION

Weight reduction is a requirement for a majority of weapon

systems being developed by the Army. The Army would like to design a

longer cannon and maintain the inertia characteristics of the shorter

cannon. This accomplishment would a11ow current cannon mounts to be

used. The longer cannon is expected to achieve higher muzzle velocity

and greater accuracy than the standard cannon. The design under con-

sideration is to replace a portion of the steel wall thickness with a

lighter material. The inner portion, the steel liner, maintains the

tube projectile interface and shields the composite from the extremely

hot gases. The outer portion, the composite jacket, is made of a

fiber-reinforced organic composite (graphite fiber and a bismaleimide

matrix). A linear stress analysis for this problem under internal

pressure in the elastic range was reported in a recent paper by M.D.

Witherell and M.A. Scavullo (ref. 1).

This paper presents a nonlinear stress and failure analysis of

the compound tube problem. The loading ranges include elastic,

elastic-plastic, and fully-plastic up to failure. Analytical

exoressions for the stresses, strains, and displacements are derived

for all cases. Numerical results for the radial and hoop stresses in

the nonlinear loading ranges are presented. The maximum value of

internal pressure that the compound tube can contain without failure

is predicted.

PROBLEM AND ELASTIC ANALYSIS

Figure I shows a schematic of the compound tube problem. The

compound tube consists of an inner steel "liner" and an outer com-

posite "jacket." The steel liner of inside radius a and outer radius
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b is wrapped in the circumferential direction with a qraphite-
bismaleimide organic composite of outside radius c. The elastic

material constants for the composite and the steel are given in Table
I.

TABLE I. ELASTIC CONSTANTS OF COMPOSITE JACKET AND STEEL LINER

Elastic Constants for IM6/Bismaleimide, 55t F.V.R.

E r = 1.126 Mpsi

E e = 23.31 Mpsi
E, = 1.126 MDsi

Pre = 0.01524

Vez = 0.3155
P.. = 0,3991

vet = 0.3155

Uz9 = 0.01524
u.. = 0.3911

. m

Elastic Constants for Steel

E = 30.0 Mpsi V = 0.3

When the composite tube is subjected to internal pressure p in

the elastic range, the general solutions in the plane-strain condition

for the isotropic liner (a ( r (b) are

ar (1)

= {_(p_q}(b ,_) + p - q bZ/aZ}/(a_ - 1)
o e (2)

b 2

u/r = E-,(1+u)[(p-q)(b/r)2 + (1-2u)(p-q b2/a2)]/(a,

and for the orthotropic jacket (b ( r (c),

1) (3)

Or = q[_ (c k-1 c k+l r k-1 2k5) (_) + (6) l/[(c/b) - 1]

09 kq[(c/b)k-l(C k+l r k-1= F) + (_) ]/[(c/b)2k - 1]

(4)

(5)

u/r = ce = a12Or + a22oe (5)

where q is the pressure at the interface, k = (¢11/¢22)_,

ali = (1-PrzUzr)/E r

a12 = - (pgr+UgzUzr)/Ee

a22 = (t-UezUze)/E e (1)

By requiring the displacement to be continuous at the interface,

the interface pressure q can be expressed as a linear function of

internal pressure p,

213 b = (c/b) 2k + 1 + S] +-- + 1 (;3)q = (_-i - 1)[Ak bZ
(c/b) 2k - 1 a2
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where

A = Eu221(l"p2), B = -Eu121(1-V2) - Pl(1-P)

Now all the stresses, strains, and displacements in the tube (a 4 r

(c) can be determined as functions of p. In particular, the

expressions for the displacements at the bore (Ua), interface (Ub),

and outside surface (u c) are

(9)

b 2 E Ua

(_ - 1)_ a = (l+P)ab-_ + (1-p-2p 2) -
..... 4(1-PS)(b2/a 2}

(bs__ _ 1)[AK_[_I_k_+B] +
a s (c/b)2k-1

b 2
-- + 1
a z

(10)

Ub (c/b) 2k + 1

-b- = q[ka22 (c/b) 2k - 1 - a12] (11)

u c 2qku22(c/b)k-1
-- = (12)
c (c/b) 2k - 1

ELASTIC-PLASTIC ANALYSIS

When the internal pressure p is large enough, part of the steel

liner will become plastic. Using Tresca's yield criterion, the asso-

ciated flow rule, and assuming linear strain-hardening, the elastic-

plastic solution based on Bland can be used (ref. 2 or ref. 3). Let p

be the elastic-plastic interface.

The solution can be written in the elastic portion (p ( r _ b)

as

= __ 1_ CL] (13)E u l+P _p._ + (l_v_2ps)[ _ b z _
o o r 2 r s o o

arlao = _ (i-- + ) - q
ps p_ (14)

oelo ° 2 r2 _ o o (15)

az/a o = p p2/b2 - 2u q/a o (16)

and in the plastic portion (a ( r (p)

E u
= (1-V-2V _ )

G O r

ar e_-- + (1-u s )
G O r _

(17)

s 1 pS= + 2 2 b 2
(1-n_)Jn _ - Cl

r o o

(18)

(19)
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az/a o = u P21b2 - 2u(1-_)In _ - 2_ q/a o (20)
r

_P : _(p21r2-1) , _ =
m

3 (l-m)
m +

4 (l-u) 2

(21)

2 E m Et

_ _o 1-m ' m = E , a = _o(1+_c p)
(22)

where _o is the initial tensile yield stress, and E t is the tangent
modulus in the plastic range of the stress-strain curve.

Using Eqs. (11) and (13) and the requirement of displacement zon-

tinuity at the interface, i.e., u b_ (liner) = Ub+ (jacket), we obtain
the expression for the interface pressure q as

q _ (1-pelP2/b2 (23)

o° (l+P)(1-2p) + E[_22k (c/b)2k + I

(c/b) 2k - I
- a12 ]

Given any value of p in a ( p ( b, we can now determine q, u, and _II

the stresses and strains in the tube. In particular, the expressi)ns

for internal pressure and for displacements at the bore and the inter-
face are

e_ = 9_ + 1 (I P_
Oo Oo _ b_) + (1-n_)en e + _ p2a 2 n_ (a_ I) 24)

E Ua [_
. - (l-P-2U2) + (l-_2)p2/a 2

°o a a o
25)

E Ub (I -u2 ) p2- (1-P-2p2) g-
°o b b 2 o o

26)

By letting p = a and b, we can determine the lower limits p*, q*,

Ua*, Ub*, Uc*, and the upper limits p**, q**, Ua** , Ub** , and Uc**
respectively.

FULLY-PLASTIC ANALYSIS

When the internal pressure p is further increased, i.e., p > p**,

the steel liner will become fully-plastic. The composite jacket

remains elastic as long as the failure pressure is not reached. U_;ing

Tresca's yield criterion, the associated flow rule, and assuming

linear strain-hardening, a fully-plastic solution can be obtained

(ref. 4). The result is presented here for completeness. The

explicit expressions for the displacement, strains, and stresses in

the plane-strain case, subject to o 0 ) o z ) o r , are
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ru = E-1(1-2v)(l+u)r_ar + ¢ b 2 (27)

r

(7r = -p + ao(1-_)In(a) +
1 #_ [b 2 b 2
2 (1-u 2) a 2 F _]E¢ (28)

_0 = Or + °o(I+_p) (29)

where o o, _, _P are the initial yield stress, hardening parameter, and

equivalent plastic strain, respectively, and

_P = -_ [¢ b2/r 2 - (1-p2)Oo/E]/[1 + -_ (1-u2)_Oo/E] (30)

¢5 ¢5

¢ = [Ea22k (c/b) 2k + 1 _ Ea12 + (1-2u)(l+v)]q/E (31)
(c/b) 2k - 1

b I b 2 (c/b) 2k + 1
p = ao(1-_#)In - + q{l + _(-- - I) [Ak

a 2 a2 (c/b) 2k - 1
+ B + 1]} (32)

It is interesting to point out that p is a linear function of q.

Similarly, when evaluating u at the bore from Eq. (2?), we obtain

uala = -(1-2u)(I+u)P/E + ¢ bZ/a 2 (33)

which can also be expressed as a linear function of q with the aid of

Eqs. (31) and (32). Since the relation between q and u b is linear

from Eq. (11), p and u a, given by Eqs. (32) and (33), respectively,

can be expressed as linear functions of u b.

FAILURE ANALYSIS

Since the steel liner is ductile and failure precedes by plastic

flows, a nonlinear stress analysis beyond the elastic limit is

required. The liner is considered as failure when the maximum stress

or maximum strain reaches the ultimate limit (o u or £u). The steel is

assumed to be elastic-plastic, linear strain-hardening with o o = 120

Ksi, E t = 120 Ksi, and a u (ultimate strength) = 140 Ksi. The com-

posite jacket is elastically-orthotropic, and brittle failure is con-
sidered with the maximum strain criterion (ref. 5). The maximum

strain from each simple test is either measured or computed from the

measured strength divided by the elastic modulus. For the composite

jacket used here, the maximum strain criterion is

!

-_x* "< £0 -< _x* and -cy* .< £r "< Cy* (34)

where

'* y* e;*_x* = X/EB , Cx = X'/EB , ( = Y/Er ' : Y'/Er

and X, X', Y, Y' = 262, 225, 8.?, 21.8 Ksi, respectively.

(35)
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DISCUSSION OF RESULTS

Given any value of internal pressure, we can obtain numerical

results for the stresses and strains in the radial and tangential

directions and also for the displacement at any radial position in a

compound tube. The actual specimens were constructed (ref. 1) using

steel liners with two thicknesses and the appropriate thickness of the

composite circumferentially wound on the liner. The geometric dimen-

sions (a,b,c) for the three composite tubes are (0.9, 1.0, 1.189),

(0.9, 1.07, 1,189), and (0.9, 1.07, 1.391) inch. The pressure at the

interface between the liner and jacket has been obtained as a function

of internal pressure and the results for three cases are shown in

Figure 2. In this figure we also show the limits of internal pressure

in the elastic-plastic range, i.e., (p*, p**) = (20.48, 23.93),

(23.06, 28.?5), and (2?.4?, 34.98) Ksi, respectively. The results of

the hoop strains at the bore, interface between the liner and jacket,

and outside surface for case 2 with (a,b,c) = (0.9, 1.07, 1.189) i_ch

are shown in Figure 3 as functions of internal pressure. The complete

(including elastic, elastic-plastic, and fully-plastic) ranges of

loadings up to failure have been considered. The maximum value of

internal pressure that this compound tube can contain without faiIJre

is pf = 48.483 Ksi, and the corresponding hoop strain is 1.12 percent.

The results of hoop stresses at the bore (ae/a) and at the interface
(ae/b_ and OS/b+) are shown in Figure 4 as functions of internal

pressure. It should be noted that the hoop stresses at the interface

are discontinuous with b- and b+ representing the location in the

liner and jacket, respectively. Figure 4 shows very clearly that :he

results change drasticall V when yielding occurs. The relation changes

from linear to nonlinear when yielding sets in and a more significant

change occurs when the fully-plastic state is reached. The distril)u-

tion of hoop stresses in the liner and jacket can be obtained at any
given value of internal pressure. In Figure 5 we present the stre_;s

distributions for five values of internal pressure, i.e., p = 23.0(_5,

26.638, 28.751, 36.617, and 48.483 Ksi. The first three values

correspond to initial yielding, 50 percent yielding, and 100 percer_t

yielding. The percent yielding in the elastic-plastic range is

defined by (p-a)/(b-a) x 100 percent. After the fully-plastic stai:e

is reached, the stress distribution changes drastically as shown in

the figure for the last three values of internal pressure. The hoop

stresses in the liner decrease slightly, but those in the jacket
increase elastically as internal pressure is increased.

CONCLUSION

The stresses, strains, and displacements in the liner and jacWet

can be obtained analytically for all loading ranges up to failure.

The plastic deformation in the liner has a significant effect on tFe

overall performance of the composite structure.
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Figure 1 Schematic of a compound tube problem

5O

P

KSI

4O

3O

2O

I0

Figure 2

2 3 1

case a b c

1 0,9 1.0 1.189

2 0.9 1.07 1.189

3 0.9 1.07 1.391

I0 20 30

q, KSI

Interface pressure as a function of internal pressure

4]

1386



P

KSI

5O

4O

3O

2O

I0

Figure 3

i

b , a
!
6

4
q

Q

J

1

I

m

i

i

t

i

!

!

I I f I I : I I I
0.4 0.8 1.2 1.6

Hoop strains at r = a, b, c, %

Hoop strains at the borepinterface and outside surface as
functions of internal pressure.

5O

P_

KSI

4O

3O

b+

2O

I0

0

Figure 4

I
40 80 120

Hoop Stresses at r = a, b- and b+, KSI

Hoop stresses at the bore and interface as functions
of internal pressure

J
160

1387



CZ_

0

0

l-

25

2O

15

Curve P, KSI

5 48. 483

4 38.617

3 28.751

2 26.638

1 23.065

3 4

3

I

5

00.9

Figure 5

liner 1.07 jacket 1.189

r, INCH

Distribution of hoop stresses in the liner and jacket

1388


